
El pensamiento
computacional

en el currículum
@jordi_a

Jordi Adell
Universitat Jaume I

http://flic.kr/p/4z7f6e

http://flic.kr/p/4z7f6e

temas:
• ¿Qué es el pensamiento computacional (PC).

¿Alfabetización universal? Elementos o
componentes del PC.

• La integración en el currículum. ¿Por qué? ¿Cómo?
Actividades didácticas: unplugged, juegos,
programación, robótica.

• Las críticas al PC.
• La formación del profesorado en PC.
• Conclusiones/Debate.

¿Qué es el “pensamiento
computacional” (PC)?

¡1.210!

¡11.500!

COMMUNICATIONS OF THE ACM March 2006/Vol. 49, No. 3 33

Computational thinking
builds on the power and
limits of computing

processes, whether they are exe-
cuted by a human or by a

machine. Computational
methods and models give us
the courage to solve prob-

lems and design systems that no one of us would
be capable of tackling alone. Computational think-
ing confronts the riddle of machine intelligence:
What can humans do better than computers? and
What can computers do better than humans? Most
fundamentally it addresses the question: What is
computable? Today, we know only parts of the
answers to such questions.

Computational thinking is a fundamental skill for
everyone, not just for computer scientists. To read-
ing, writing, and arithmetic, we should add compu-
tational thinking to every child’s analytical ability.
Just as the printing press facilitated the spread of the
three Rs, what is appropriately incestuous about this
vision is that computing and computers facilitate the
spread of computational thinking.

Computational thinking involves solving prob-
lems, designing systems, and understanding human
behavior, by drawing on the concepts fundamental
to computer science. Computational thinking
includes a range of mental tools that reflect the
breadth of the field of computer science.

Having to solve a particular problem, we might
ask: How difficult is it to solve? and What’s the best
way to solve it? Computer science rests on solid the-
oretical underpinnings to answer such questions pre-

cisely. Stating the difficulty of a problem accounts
for the underlying power of the machine—the com-
puting device that will run the solution. We must
consider the machine’s instruction set, its resource
constraints, and its operating environment.

In solving a problem efficiently,, we might further
ask whether an approximate solution is good
enough, whether we can use randomization to our
advantage, and whether false positives or false nega-
tives are allowed. Computational thinking is refor-
mulating a seemingly difficult problem into one we
know how to solve, perhaps by reduction, embed-
ding, transformation, or simulation.

Computational thinking is thinking recursively. It
is parallel processing. It is interpreting code as data
and data as code. It is type checking as the general-
ization of dimensional analysis. It is recognizing
both the virtues and the dangers of aliasing, or giv-
ing someone or something more than one name. It
is recognizing both the cost and power of indirect
addressing and procedure call. It is judging a pro-
gram not just for correctness and efficiency but for
aesthetics, and a system’s design for simplicity and
elegance.

Computational thinking is using abstraction and
decomposition when attacking a large complex task
or designing a large complex system. It is separation
of concerns. It is choosing an appropriate representa-
tion for a problem or modeling the relevant aspects
of a problem to make it tractable. It is using invari-
ants to describe a system’s behavior succinctly and
declaratively. It is having the confidence we can
safely use, modify, and influence a large complex
system without understanding its every detail. It isLI

SA
 H

AN
EY

Viewpoint Jeannette M. Wing

Computational Thinking
It represents a universally applicable attitude and skill set everyone, not just
computer scientists, would be eager to learn and use.

Wing, J. M. (2006). Computational
thinking. Communications of the ACM,
49(3), 33-35.

Pero hay más…

“El Pensamiento Computacional son los
procesos de pensamiento implicados en la
formulación de problemas y sus soluciones para
que estas últimas estén representadas de forma
que puedan llevarse a cabo de manera efectiva
por un procesador de información" (Wing, 2011,
p. 1)

Es decir…

	 1.	El Pensamiento Computacional es un proceso de
pensamiento, por lo tanto independiente de la
tecnología.  

	 2.	El Pensamiento Computacional es un tipo
específico de resolución de problemas que implica
capacidades distintas, por ejemplo, ser capaz de
diseñar soluciones para ser ejecutadas por un
ordenador, un humano, o una combinación de ambos.

Pero sigue sin haber
acuerdo…

6. CONCLUSION  
There is a genuine need for a robust and
agreed definition of computational
thinking. The definition can facilitate
the development of computer science
curriculums in line with Wing’s original
vision to encourage computational
thinking for all. The definition may also
ensure that the K-12 curriculums will
not become just a collection of
interesting resources presented at
teachers’ discretions.  

1

teacher resources second edition

Definición “operacional”

El pensamiento computacional es un
proceso de resolución de problemas que
incluye (pero no se limita a) las
siguientes características:

Computer Science Teachers Association & International Society
for Technology in Education (CSTA & ISTE, 2009, p.1)

1. Formular problemas de
manera que se pueda
utilizar un ordenador y
otras herramientas para
ayudar a resolverlos.

2. Organizar y analizar datos de
una manera lógica.

3. Representar datos
mediante abstracciones
tales como modelos y
simulaciones.

4. Automatizar
soluciones mediante
el pensamiento
algorítmico (una serie
de pasos ordenados).

5. Identificar, analizar y aplicar posibles
soluciones con el objetivo de conseguir la
combinación más eficaz de pasos y
recursos.

6. Generalizar y transferir este proceso de
solución de problemas a una amplia
variedad de tareas y problemas.

Y además, las siguientes actitudes:

• La confianza para tratar con la complejidad.

• La persistencia en el trabajo con problemas
difíciles.

• Tolerancia a la ambigüedad.

• La capacidad para hacer frente problemas abiertos.

• La capacidad de comunicarse y trabajar con otros
para alcanzar una meta o solución común.

La integración en el
currículum

Authors: Stefania Bocconi, Augusto Chioccariello,
Giuliana Dettori, Anusca Ferrari, Katja Engelhardt

Editors: Panagiotis Kampylis, Yves Punie

Implications for policy and
practice

Developing Computational Thinking
in Compulsory Education

2016

EUR 28295 EN

http://publications.jrc.ec.europa.eu/
repository/bitstream/JRC104188/
jrc104188_computhinkreport.pdf

¿JCR?

http://publications.jrc.ec.europa.eu/repository/bitstream/JRC104188/jrc104188_computhinkreport.pdf
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC104188/jrc104188_computhinkreport.pdf
http://publications.jrc.ec.europa.eu/repository/bitstream/JRC104188/jrc104188_computhinkreport.pdf

El Pensamiento Computacional en la Enseñanza Obligatoria
(Computhink)

Implicaciones para la política y la práctica

Instituto Nacional de Tecnologías Educativas y de Formación del Profesorado (INTEF)

Departamento de Proyectos Europeos

Febrero 2017

http://educalab.es/intef @educaINTEF http://educalab.es/blogs/intef/

Kindergarteners Learning to Code, de Kevin Jarret, en Flickr, con licencia CC BY 2.0

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K. (2016). Developing
computational thinking in compulsory education – Implications for policy and practice; EUR 28295

EN; doi: 10.2791/792158

Esta obra está bajo una licencia Creative Commons Atribución-CompartirIgual 3.0 España

http://blog.educalab.es/intef/wp-
content/uploads/sites/

4/2017/02/2017_0206_CompuThin
k_JRC_UE-INTEF.pdf

http://blog.educalab.es/intef/wp-content/uploads/sites/4/2017/02/2017_0206_CompuThink_JRC_UE-INTEF.pdf
http://blog.educalab.es/intef/wp-content/uploads/sites/4/2017/02/2017_0206_CompuThink_JRC_UE-INTEF.pdf
http://blog.educalab.es/intef/wp-content/uploads/sites/4/2017/02/2017_0206_CompuThink_JRC_UE-INTEF.pdf
http://blog.educalab.es/intef/wp-content/uploads/sites/4/2017/02/2017_0206_CompuThink_JRC_UE-INTEF.pdf

¿Por qué?
“En resumen, surgen dos tendencias principales respecto a la
justificación para incluir el Pensamiento Computacional en la
enseñanza obligatoria:
1. El desarrollo de habilidades de Pensamiento Computacional en

niños y jóvenes para que puedan pensar de manera diferente,
expresarse a través de una variedad de medios, resolver
problemas del mundo real y analizar temas cotidianos desde una
perspectiva diferente.

2. El fomento del Pensamiento Computacional para impulsar el
crecimiento económico, cubrir puestos de trabajo TIC y
prepararse para futuros empleos.”

(Bocconi et al., 2016, pág. 25).

España
• No hay documento curricular oficial estatal que mencione el

"Pensamiento Computacional”.

• Conceptos relacionados en determinadas asignaturas: Tecnología
(ESO), “Tecnología Industrial” y “Tecnologías de la Información y la
Comunicación” (Bachillerato)

• Conceptos relacionados en asignaturas ofrecidas en comunidades
autónomas: Andalucía, Canarias, Cantabria, Castilla-La Mancha,
Castilla y León, Murcia, Madrid, La Rioja y Comunidad Valenciana.

• En Cataluña: hay “programación” en la descripción de la
“Competencia Digital” en el currículum de primaria. En secundaria:
aspectos de programación y robótica están presentes en la enseñanza
de Tecnología.

Published: September 2013

Computing programmes of study:
key stages 1 and 2
National curriculum in England

Purpose of study
A high-quality computing education equips pupils to use computational thinking and
creativity to understand and change the world. Computing has deep links with
mathematics, science, and design and technology, and provides insights into both natural
and artificial systems. The core of computing is computer science, in which pupils are
taught the principles of information and computation, how digital systems work, and how to
put this knowledge to use through programming. Building on this knowledge and
understanding, pupils are equipped to use information technology to create programs,
systems and a range of content. Computing also ensures that pupils become digitally
literate – able to use, and express themselves and develop their ideas through, information
and communication technology – at a level suitable for the future workplace and as active
participants in a digital world.

Aims
The national curriculum for computing aims to ensure that all pupils:

� can understand and apply the fundamental principles and concepts of computer
science, including abstraction, logic, algorithms and data representation

� can analyse problems in computational terms, and have repeated practical experience
of writing computer programs in order to solve such problems

� can evaluate and apply information technology, including new or unfamiliar
technologies, analytically to solve problems

� are responsible, competent, confident and creative users of information and
communication technology.

Attainment targets
By the end of each key stage, pupils are expected to know, apply and understand the
matters, skills and processes specified in the relevant programme of study.

Schools are not required by law to teach the example content in [square brackets].

Published: September 2013

Computing programmes of study:
key stages 3 and 4
National curriculum in England

Purpose of study
A high-quality computing education equips pupils to use computational thinking and
creativity to understand and change the world. Computing has deep links with
mathematics, science, and design and technology, and provides insights into both natural
and artificial systems. The core of computing is computer science, in which pupils are
taught the principles of information and computation, how digital systems work, and how to
put this knowledge to use through programming. Building on this knowledge and
understanding, pupils are equipped to use information technology to create programs,
systems and a range of content. Computing also ensures that pupils become digitally
literate – able to use, and express themselves and develop their ideas through, information
and communication technology – at a level suitable for the future workplace and as active
participants in a digital world.

Aims
The national curriculum for computing aims to ensure that all pupils:

� can understand and apply the fundamental principles and concepts of computer
science, including abstraction, logic, algorithms and data representation

� can analyse problems in computational terms, and have repeated practical experience
of writing computer programs in order to solve such problems

� can evaluate and apply information technology, including new or unfamiliar
technologies, analytically to solve problems

� are responsible, competent, confident and creative users of information and
communication technology.

Attainment targets
By the end of each key stage, pupils are expected to know, apply and understand the
matters, skills and processes specified in the relevant programme of study.

Schools are not required by law to teach the example content in [square brackets].

https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study

https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study

v8.1 Australian Curriculum www.australiancurriculum.com.au December 2015 Page 2

F-2 3-4 5-6 7-8 9-10 (Elective subject)

Generating and
designing

Design a user interface for a
digital system (ACTDIP018)

Design, modify and follow
simple algorithms involving
sequences of steps, branching,
and iteration (repetition)
(ACTDIP019)

Design the user experience
of a digital system,
generating, evaluating and
communicating alternative
designs (ACTDIP028)

Design algorithms represented
diagrammatically and in
English, and trace algorithms to
predict output for a given input
and to identify errors
(ACTDIP029)

Design the user experience of
a digital system by evaluating
alternative designs against
criteria including functionality,
accessibility, usability, and
aesthetics (ACTDIP039)

Design algorithms represented
diagrammatically and in
structured English and validate
algorithms and programs
through tracing and test cases
(ACTDIP040)

Producing and
implementing

Implement simple digital
solutions as visual programs
with algorithms involving
branching (decisions) and user
input (ACTDIP011)

Implement digital solutions
as simple visual programs
involving branching, iteration
(repetition), and user input
(ACTDIP020)

Implement and modify
programs with user interfaces
involving branching, iteration
and functions in a general-
purpose programming language
(ACTDIP030)

Implement modular programs,
applying selected algorithms
and data structures including
using an object-oriented
programming language
(ACTDIP041)

Evaluating Explore how people safely
use common information
systems to meet information,
communication and recreation
needs (ACTDIP005)

Explain how student solutions
and existing information
systems meet common
personal, school or community
needs (ACTDIP012)

Explain how student solutions
and existing information
systems are sustainable and
meet current and future local
community needs (ACTDIP021)

Evaluate how student solutions
and existing information
systems meet needs, are
innovative, and take account of
future risks and sustainability
(ACTDIP031)

Evaluate critically how
student solutions and existing
information systems and
policies, take account of
future risks and sustainability
and provide opportunities for
innovation and enterprise
(ACTDIP042)

Collaborating
and managing

Create and organise ideas and
information using information
systems independently and with
others, and share these with
known people in safe online
environments (ACTDIP006)

Plan, create and communicate
ideas and information
independently and with others,
applying agreed ethical and
social protocols (ACTDIP013)

Plan, create and communicate
ideas and information, including
collaboratively online, applying
agreed ethical, social and
technical protocols
(ACTDIP022)

Plan and manage projects that
create and communicate ideas
and information collaboratively
online, taking safety and social
contexts into account
(ACTDIP032)

Create interactive solutions for
sharing ideas and information
online, taking into account
safety, social contexts and legal
responsibilities (ACTDIP043)
Plan and manage projects using
an iterative and collaborative
approach, identifying risks
and considering safety and
sustainability (ACTDIP044)

Digital Technologies: Sequence of content F-10 Strand: Processes and production skills

Digital Technologies: Sequence of content F-10 Strand: Knowledge and understanding

F-2 3-4 5-6 7-8 9-10 (Elective subject)

Digital
systems

Recognise and explore digital
systems (hardware and
software components) for a
purpose (ACTDIK001)

Identify and explore a range of
digital systems with peripheral
devices for different purposes,
and transmit different types of
data (ACTDIK007)

Examine the main components
of common digital systems and
how they may connect together
to form networks to transmit
data (ACTDIK014)

Investigate how data is
transmitted and secured
in wired, wireless and
mobile networks, and how
the specifications affect
performance (ACTDIK023)

Investigate the role of hardware
and software in managing,
controlling and securing the
movement of and access
to data in networked digital
systems (ACTDIK034)

Representation
of data

Recognise and explore patterns
in data and represent data as
pictures, symbols and diagrams
(ACTDIK002)

Recognise different types of
data and explore how the same
data can be represented in
different ways (ACTDIK008)

Examine how whole numbers
are used to represent all data in
digital systems (ACTDIK015)

Investigate how digital systems
represent text, image and audio
data in binary (ACTDIK024)

Analyse simple compression of
data and how content data are
separated from presentation
(ACTDIK035)

v8.1 Australian Curriculum www.australiancurriculum.com.au December 2015 Page 1

Digital Technologies: Sequence of content F-10 Strand: Processes and production skills

F-2 3-4 5-6 7-8 9-10 (Elective subject)

Collecting,
managing and
analysing data

Collect, explore and sort
data, and use digital systems
to present the data creatively
(ACTDIP003)

Collect, access and present
different types of data using
simple software to create
information and solve problems
(ACTDIP009)

Acquire, store and validate
different types of data, and use
a range of software to interpret
and visualise data to create
information (ACTDIP016)

Acquire data from a range
of sources and evaluate
authenticity, accuracy and
timeliness (ACTDIP025)
Analyse and visualise data
using a range of software to
create information, and use
structured data to model
objects or events (ACTDIP026)

Develop techniques for
acquiring, storing and validating
quantitative and qualitative
data from a range of sources,
considering privacy and
security requirements
(ACTDIP036)
Analyse and visualise data to
create information and address
complex problems, and model
processes, entities and their
relationships using structured
data (ACTDIP037)

Creating digital solutions by:

Investigating
and defining

Follow, describe and represent
a sequence of steps and
decisions (algorithms)
needed to solve simple
problems (ACTDIP004)

Define simple problems, and
describe and follow a sequence
of steps and decisions
(algorithms) needed to solve
them (ACTDIP010)

Define problems in terms
of data and functional
requirements drawing on
previously solved problems
(ACTDIP017)

Define and decompose real-
world problems taking into
account functional requirements
and economic, environmental,
social, technical and usability
constraints (ACTDIP027)

Define and decompose real-
world problems precisely, taking
into account functional and
non-functional requirements
and including interviewing
stakeholders to identify needs
(ACTDIP038)

etc.

Críticas

... los profesionales de la computación pueden
intentar resolver todos los problemas a través de

medios algorítmicos, mientras no perciben aquellos
que no pueden ser expresados usando las

abstracciones del pensamiento computacional.

Easterbrook, S. (2014). From computational thinking to systems
thinking: A conceptual toolkit for sustainability computing. In
Proceedings of the 2nd international conference on information and
communication technologies for sustainability (ICT4S’2014),
stockholm, sweden, 24-27 august, 2014.

Si tu única herramienta es un martillo,
tiendes a tratar cada problema como
si fuera un clavo.
Abraham Maslow, 1966. ”The Psychology of Science”.

El martillo de Maslow

Problemas mansos vs.
problemas retorcidos

Political computational thinking: policy networks, digital governance
and ‘learning to code’

Ben Williamson*

School of Education, University of Stirling, Stirling, UK

Reflecting political shifts toward both ‘network governance’ and ‘digital governance’,
the idea of ‘learning to code’ has become part of a major reform agenda in education
policy in England. This article provides a ‘policy network analysis’ tracing the
governmental, business and civil society actors now operating in policy networks to
project learning to code into the reformed programs of study for computing in the
National Curriculum in England. The insertion of learning to code into the curriculum
provides evidence of how the education policy process is being displaced to cross-
sector ‘boundary organizations’ such as ‘policy labs’ that act as connecting nodes to
broker networks across public and private sector borderlines. It also examines how the
pedagogies of learning to code are intended to inculcate young people into the material
practices and systems of thought associated with computer coding, and to contribute to
new forms of ‘digital governance’. These developments are evidence of a ‘reluctant
state’ deconcentrating its responsibilities, and also of a computational style of political
thinking that assumes policy problems can be addressed using the right code. Learning
to code is seen as a way of shaping governable citizens that can participate in the
dynamics of digital governance.

Keywords: computing curriculum; computational thinking; learning to code;
governance; policy networks; policy labs

Education policy has become a significant site for the analysis of changing styles of
governance and political thinking (Grek 2014). This article documents how emerging
forms of both cross-sectoral ‘network governance’ and technology-enabled ‘digital gov-
ernance’ have combined in a significant area of policymaking in education. Since 2010,
the idea of ‘learning to code’ – learning the skills of computer programming – has grown
from a minority concern among computing educators, grassroots computing organizations
and computer scientists into a major curriculum reform discourse in England. Originally
articulated by campaigning groups including Computing at School and learned societies
such as the Royal Society, ‘learning to code’ has been actively promoted in England by
cross-sector organizations – among them Nesta (the National Endowment for Science,
Technology and the Arts) and the Nominet Trust – that are increasingly participating in
new kinds of network governance in education. These new forms of governance are
characterized by being decentralized, horizontal and nonhierarchical, and are made up of
various networks, public–private partnerships, flexible alliances, couplings and combina-
tions of interests from across diverse sectoral positions and local, national and global
spaces (Kutay 2014; Ozga, Segerholm, and Simola 2011). Organizations like Nesta and
Nominet Trust participate as ‘connective nodes’ in such networks and alliances,

*Email: ben.williamson@stir.ac.uk

Critical Policy Studies, 2015
http://dx.doi.org/10.1080/19460171.2015.1052003

© 2015 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecom
mons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

D
ow

nl
oa

de
d

by
 [U

ni
ve

rs
ita

t J
au

m
e

I]
 a

t 0
5:

47
 0

7
D

ec
em

be
r 2

01
5

La crítica “política” al “learning to code”

Actividades didácticas
para el desarrollo del PC

http://csunplugged.org

http://csunplugged.org

PC y formación del
profesorado de Primaria

Ideas clave:

http://complubot.com/inicio/formacion/formacion-formadores/

Resnick, M. (2007). All I Really Need to Know (About Creative
Thinking) I Learned (By Studying How Children Learn) in
Kindergarten. Presented at Creativity & Cognition conference, June
2007.

(1) desenchufado, (2) jugar, (3) hacer, y (4) remezclar,
Kotsopoulos, D., Floyd, L., Khan, S., Namukasa, I. K., Somanath, S., Weber, J., & Yiu,

C. (2017). A Pedagogical Framework for Computational Thinking. Digital
Experiences in Mathematics Education, 1-18. DOI:10.1007/s40751-017-0031-2.

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J.
(2016). A K-6 Computational Thinking Curriculum Framework- Implications for

Teacher Knowledge. Educational Technology & Society, 19(3), 47–57.

TPACK

1

PROGRAMAR PARA APRENDER:
ORIENTACIONES PARA EL PROFESORADO DE PRIMARIA

Programar
para aprender:
orientaciones para
el profesorado de
Primaria

http://codigo21.educacion.navarra.es/2015/01/12/disponible-para-descarga-
la-guia-programar-para-aprender-en-primaria/

Conclusiones

1. El PC ya está aquí,
y está para quedarse.

2. Los desacuerdos académicos en su
definición y elementos no parecen ser un
obstáculo para su integración en el
currículum de la educación obligatoria y
secundaria no obligatoria en muchos países.

3. Predicción: en la próxima
reforma del currículum a
nivel estatal aparecerá el PC.

4. Es posible “orientar” la enseñanza y el
aprendizaje del PC de formas diversas y no
excluyentes: PC, programación-robótica,
alfabetización computacional (code literacy),
parte de la competencia digital, etc.

5. Deberíamos prepararnos:

•formación del profesorado en ejercicio;
•formación inicial del profesorado;
•desarrollo del currículum;
•dotación de medios y recursos a los
centros, etc.

5. Hace falta más investigación:

• Formación inicial del profesorado.
• Diseño y desarrollo de
actividades didácticas PC.
• Evaluación del PC.

Moltes
gràcies!

http://www.flickr.com/photos/alwaysbecool/2871346522

http://www.flickr.com/photos/alwaysbecool/2871346522

¿Preguntas?
¿Comentarios?

